思路:
如果用朴素的方法算O(n^4)超时,这里用折半二分。把数组分成两块,分别计算前后两个的和,然后枚举第一个再二分查找第二个中是否有满足和为0的数。
注意和有重复
#include#include #include #define ll long longusing namespace std;const int N = 4000+5;int a[N],b[N],c[N],d[N];int mp1[N*N],mp2[N*N],cn1,cn2;int main(){ int n; scanf("%d",&n); for(int i = 1;i <= n;i++) scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]); cn1 = cn2 = 0; for(int i = 1;i <= n;i++){ for(int j = 1;j <= n;j++){ mp1[cn1++] = a[i] + b[j]; mp2[cn2++] = c[i] + d[j]; } } sort(mp2,mp2+cn2); ll ans = 0; for(int i = 0;i < cn1;i++){ int x = lower_bound(mp2,mp2+cn2,-mp1[i]) - mp2; if(mp1[i] + mp2[x] == 0) ans += upper_bound(mp2,mp2+cn2,-mp1[i]) - mp2 - x; } printf("%lld\n",ans); return 0;}